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J. Koch, 9/2/11 
 

Volume and surface area of a spherical harmonic surface approximation to a 
NIF implosion core defined  by HGXI/GXD images from the equator and pole 

 
 A solid object, such as a simplified approximation to an implosion core 
defined by the 17% intensity contour, can be described by a sum of spherical 
harmonics, following the notation of Butkov (Mathematical Physics, ISBN 0-201-
00727-4, 1968; there are other notations so care is required): 
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with Pl(x) being the usual (apparently standard) Legendre polynomial.  For the 
present purposes, finding the volume and surface area of an implosion core defined 
by P0, P2, P4, M0, and M4, I will restrict the problem to consider only A00, A20, A40, 
and A44, with the phase angle set to eliminate the sin(m term.  Once the volume 
and surface area are determined, I will explore how these coefficients relate to 
measured quantities A0, A2/A0, A4/A0, M0, and M4/M0. 
 Using the above definitions, I can explicitly write the functions of interest: 
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Therefore, I can write r() explicitly as well: 
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 The volume enclosed within a surface defined by r(), and the area of that 
surface (http://ciks.cbt.nist.gov/~garbocz/paper134/node4.html), can be written 
as: 
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I. Volume 
 
 The volume integral can be written as: 
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The second and fourth terms vanish, and the remainder can be written as: 
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The second term can be written as: 
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so the complete volume integral becomes: 
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Now, with experimental data we fit 2D implosion images to Legendre polynomials 
and Fourier modes from the equatorial and polar views respectively: 
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Considering the full spherical harmonic shape defined above in terms of A, B, C and 
D, and neglecting the impact of m4 on the equatorial view (which averages to zero, 
but generally will depend on the azimuth of the equatorial view), we can identify the 
terms as: 
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Finally, separating out A0 and rewriting, we have: 
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This is a cumbersome equation to manipulate, but it is simple to program into a 
calculator or an Excel spreadsheet. 
 
I. Surface Area 
 
 The surface area integral will in general be impossible to solve analytically, 
so from the start I will aim to solve it numerically.  The integral is: 
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Taking the derivatives and rearranging, this is: 
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where , ,  and  are defined above.  This equation can be solved numerically in 
various ways, and a FORTRAN code example is shown below: 
 
 
 
 
      program surfacevolume 

      pi = acos(-1.0) 

c 

      a0 = 20.879 

      p2 = -0.212 

      p4 = 0.067 

      xm4 = 0.112 

      alpha = 1.0-p2/2.0+3.0*p4/8.0 

      beta = 3.0*(p2-5.0*p4/2.0)/2.0 

      gamma = 35.0*p4/8.0 

      delta = (1.0-p2/2.0+3.0*p4/8.0)*xm4 

c 

      n = 1000 

      m = 1000 

      deltax = pi/n 

      deltay = 2.0*pi/m 

      area = 0.0 

c 

      do 100 i=1,n-1 

        x = i*deltax 

        do 200 j=1,m-1 

          y = j*deltay 

          r = alpha+beta*cos(x)**2+gamma*cos(x)**4+delta*sin(x)**4* 

     >     cos(4.0*y) 

          dphi = -4.0*delta*sin(x)**4*sin(4.0*y) 

          dth = -2.0*sin(x)*cos(x)*(beta+2.0*gamma*cos(x)**2- 

     >     2.0*delta*sin(x)**2*cos(4.0*y)) 

          area = area + r*sqrt(dphi**2+dth**2*sin(x)**2+r**2* 

     >     sin(x)**2) 

200     continue 

100   continue 

      area = area*deltax*deltay/(4.0*pi) 

c 

      volume = alpha**2*(alpha+beta)+(3.0*alpha/5.0+gamma/3.0)* 

     > (alpha*gamma+beta**2)+beta*(6.0*alpha*gamma+beta**2)/7.0+ 

     > gamma**2*(3.0*beta/11.0+gamma/13.0)+64.0*delta**2*(alpha+ 

     > beta/11.0+3.0*gamma/143.0)/105.0 

      write(6,*) 'volume = ',volume*(4.0*pi*a0**3/3.0), 

     > 'volume multiplier = ',volume,' radius multipler = ', 

     > volume**0.3333333 

      write(6,*) 'surface area = ',area*4.0*pi*a0**2, 

     > 'area multiplier = ',area,' radius multipler = ',area**0.5 

c 

      pause 'hit cr' 

      end 

 
The numerical results from this program agree with analytical and numerical results 
I have previously obtained considering only P2, and also considering only M4. 
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III. Relationship to spherical harmonics coefficients 
 Finally, I can write the spherical harmonics coefficients defined above in 
terms of the measured quantities: 
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